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Abstract. A class of optimal transformations is defined through the weight function which, 
when implemented into simple approximations of the renormalisation group, predicts 
values for the thermal exponent, yT. and the magnetic field exponent, yH, which are in 
better agreement with the exact results than those obtained with the majority sign rule. 
Specifically, we find that for the ferromagnetic triangular Ising lattice yT  = 0.914 and 
y H  = 1.908 (using the same approximation, the majority sign rule predicts yT=0.736 and 
yH = 1.669). This weight function is used to calculate the properties of the ferromagnetic 
and antiferromagnetic square king lattice with a two-cell cluster and a one-hypercube 
approximation. The weight function is the first stage in the development of a real-space 
renormalisation group transformation free of the ‘peculiarities’ observed by Griffiths. 

1. Introduction 

The renormalisation group (RG) (Domb and Green 1976), as a technique for evaluating 
the partition functions of systems which undergo phase transitions, was developed by 
Wilson (1971a, b) and was formulated as a calculational tool by Wilson and Fisher 
(1972), who transformed the Ising model from real into momentum space (MSRG) 
and summed an infinite series of partial traces to evaluate the partition function. They 
limited the integration to short wavelengths, thereby excluding from the RG transfor- 
mation the singularities associated with the critical point, which is an essential feature 
for the transformation to be analytic. Niemeijer and Van Leeuwen (Domb and 
Green 1976) were able to apply the ideas of Wilson directly to a lattice in real space 
via the introduction of a weight function, an operator which maps the state of the 
spins in a Kadanoff cell onto a renormalised spin state. Their particular realisation 
of the weight function is the majority sign rule (MSR) in which the state of the majority 
of spins in the Kadanoff cell determines the state of the renormalised spin. The MSR 
has been used in the analysis of many two- and three-dimensional systems but the 
results obtained do not show the same accuracy as those obtained from high- 
temperature series expansion. 

Recently, Griffiths and Pearce (1978) and Griffiths (1981) have shown that a 
certain class of real-space renormalisation group (RSRG) is not regular: the parameters 
of the renormalised Hamiltonians are not smoothly dependent on the interaction 
parameters of the original Hamiltonian. It is also possible that, in the thermodynamic 
limit, the renormalised Hamiltonians are non-existent and the transformation is, 
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therefore, mathematically meaningless. The RSRG equation is given by 

eH'(rr) = 1 P ( F ,  a) eH""' 
(-1 

where H' (H) refers to the renormalised (original) Hamiltonian, p (a) is the renor- 
malised (original) spin variables and P ( k ,  a) is the weight function. The transformation 
is expected to be smooth if the weight function modulates the terms of the partition 
function in such a manner that the singularities are suppressed. The necessary 
conditions for the weight function are 

where ( a )  ensures the invariance of the free energy and (6) limits the transformation 
to the space of real Hamiltonians. Equation (26) is guaranteed if we have the stronger 
condition 1 > P ( p ,  a) 3 0. The right-hand side of equation (1) may be expressed in 
terms of a modified Hamiltonian 

(3) 
Griffiths (1981) notes that in all instances of 'peculiarities' in RSRG transformations, 

the modified partition function, that is eH(rr7u) , undergoes a phase transition. The 
singularities observed in these transformations are those present in the system H ( a )  
and are related to the long-wavelength fluctuations which are specifically left un- 
summed in MSRG through the momentum cut-off procedure. Hence, the presence of 
a phase transition in the modified system indicates that the counterpart of the momen- 
tum cut-off is not, in general, present in RSRG. Thus, an additional and essential 
feature of the weight function is required, namely that the long-wavelength fluctuations 
of the partition function of H ( a )  should be excluded from the modified partition 
function. 

In this work we report results obtained with a weight function which, for ferromag- 
netic systems only, is of the same form as the one used by Kadanoff (1975). In the 
present case, however, the free parameter of the weight function is related to the 
nearest-neighbour interaction. This has the effect of decoupling the lattice and thus 
making it impossible for long-wavelength fluctuations to develop. The transformation 
is applied to the one-dimensional ferromagnetic lattice and to the two-dimensional 
square ferromagnetic and antiferromagnetic Ising model. The results, in all cases, 
show an improvement over those obtained with the MSR. 

If we allow the relationship between the weight function and the strength of the 
nearest-neighbour interaction to be treated as an adjustable parameter, we find good 
agreement between Y T ,  y H  and Kc (the critical coupling) and their exact values, This 
part of our work complements the optimal transformations considered by Witten and 
Prentis (1981). They considered deviations of the weight function from the majority 
sign rule and obtained good agreement between KC and y H  with their exact values. 
In certain instances, however, there was a discrepancy between the calculated and 
exact thermal exponent. A similar discrepancy in the thermal exponent has appeared 
also in the variational cumulant expansion (Shenker et a1 1979) and in a consistent 
analysis of the lower-bound one-hypercube approximation (van Saarloos et a1 1978, 
Knops 1977). 

H ( k ,  U )  = H ( a )  +in P ( p ,  a). 
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In § 2 we describe our weight function and apply it to the one-dimensional 
ferromagnetic Ising model. The weight function is extended to allow for the analysis 
of two-dimensional models and the results of the calculations are presented in § 3. 
We also incorporate this weight function within the one-hypercube approximation 
and the results for the two-dimensional square ferromagnetic Ising model are presented 
in § 4. We point out a method of extending this approach in 0 5 where we also look 
at general methods of ensuring regular RSRG transformations. 

2. The weight function 

The models we look at are Ising spins defined on one- and two-dimensional 
lattices. The Hamiltonian consists of a set of reduced interactions Kni where n denotes 
the number of spins involved in the interactions and i labels the type, for example 
Kzl (nearest neighbour), K22 (next nearest neighbour). The one-dimensional reduced 
Hamiltonian is given by 

The one-dimensional lattice is blocked into two spin cells (see figure 1) separated by 
a distance I and with a renormalised spin variable p associated with each cell. The 
necessary conditions are not sufficient to define a unique weight function. Consider 
the weight function for the ith cell: 

( 5 )  P ( P ,  a )  = Eexp (kip(iai +~ i+ l ) ) I / [2  cosh p(ai + ~ i + l ) I .  

Figure 1. A segment of the one-dimensional king chain showing the blocking into Kadanoff 
cells labelled i and j .  pi and pi are the renormalised spins, and the original spirt variables 
are ui, u ~ + ~ ,  and uj and q + l .  p is the interaction between the two systems and K z 1  is the 
nearest-neighbour interaction between the U spins. 

This is of the same general form as the one used by Nelson and Fisher (1975) and 
Kadanoff (1975). However, in order to prevent the development of long-wavelength 
fluctuations in the modified Hamiltonian, p is defined through the equation 

(6) A2 coshp(q  + a + l )  = exp(KZIUiUi+l). 

The modified Hamiltonian written in terms of this weight function is 

H(P, ~ ) = K 2 1  C U U n n  + P  Pi(Ui +~i+l)-K21 UiUi+l- (8) 
nn I i 

The renormalised spins are not dynamical variables and hence the modified system 
consists of nearest-neighbour interaction between U spins belonging to different cells, 
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but no resultant interactions between the spins in a cell. It is straightforward to calculate 
the renormalised couplings K i l  and Kbo which in zero magnetic field are 

Kbo = f ln(4 cosh 2KZ1) 

Ki l  = f ln(2 cosh 2Kzl). 
(9a) 

(96) 

In figure 2 we show the variation of p and the weight function with Kzl and in 
figure 3 the variation of the weight function with p .  There are several features worth 
noting: 

(i) The requirements on the weight function as expressed in equation (2) are 
satisfied for all values of p .  

(ii) cosh 2 p  =ezKzl-if the system is in a ground state with energy Eo then the 
normalising part of the weight function cancels exp (Eo). 

(iii) For a given configuration of the renormalised system, the summation of the 
infinite number of configurations of the U spins factorises into a number of independent 
sections, thus making it impossible for long-wavelength fluctuations to develop in the 
modified partition function. 

(iv) In the strong coupling limit, that is as T + 0, the weight function becomes the 
majority sign rule and at the weak coupling limit the weight function is 3 for all states 
of the spins in the cell. 

1.0 

08 

0.6 

0 .4  

0.2 

0 
K 

Figure 2. Variations of the weight function P and the coupling parameter p with nearest- 
neighbour interaction K. In the strong coupling limit (K2, +CO)  P tends to the majority 
sign rule. 
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Figure 3. Variation of the weight function P (for the case where all spins in the Kadanoff 
cell, that is pi, and g, and urcl are aligned) against the coupling parameter p.  

(v) The contributions to the modified partition function are the same for all 
equivalent U configurations, which is quite unlike the majority sign rule where the 
contributions to the modified partition function depend on the blocking of the cells. 

A surprising feature of the weight function described by equations ( 5 )  and (7) is 
the close relationship between the values of p at the critical couplings for the two- 
and three-dimensional systems and those obtained by Kadanoff et a1 (1976) from 
their optimising procedure. At Kc = 0.4407 (2d) and Kc = 0.158 ( 3 4  the values of 
p from equation (6) are 0.764 and 0.418 whilst the values obtained by Kadanoff et 
al (1976) from optimising the free energy are 0.766 and 0.403. We postulate that, 
in general, weight functions associated with analytic transformations should display 
the properties noted above for the one-dimensional ferromagnetic Ising system. 

3. The two-dimensional lattice 

We now consider a two-cell cluster for the square Ising ferromagnet with each cell 
consisting of four spins and, in addition, we impose periodic boundary conditions. 
The weight function is 

-1 

P(P, a) = [ exp( g i p  U!)]( 2 cosh p m) . 
lei lei 

It is impossible to decouple the lattice with a single value of p as we were able to 
do for the one-dimensional ferromagnet due to the connectivity of the lattice. We 
satisfy condition (ii), that is the normalising factor cancels the contribution of the 
ground-state energy in the modified partition function 

Thus 



2286 N Jan and L L Moseley 

The resulting system is described by the modified Hamiltonian 

The ground state of this system consists only of fields (i.e. either + p  or - p )  acting 
on the (T variables. A consistent treatment requires that p be dependent on the 
configurational energies such that this condition is always satisfied. This would lead 
to the removal of the ‘peculiarities’ observed by Griffiths (1981). However, in this 
work we stay within the one-parameter subspace and look for conditions for selecting 
an optimum value for p. 

The fixed point (KFl ), y T  and yH are given for the two-cell cluster in table 1 and 
for comparison we have included the results obtained from a two-cell cluster and 
four-cell cluster (Nauenberg and Nienhuis 1974) using the MSR. The above results 
are free of adjustable parameters, that is r = 4. If r is treated as an adjustable parameter 
then at r = 2 the correct critical temperature is obtained and there is also close 
agreement with the known critical exponents. The variation of the relevant properties 
of the transformation with r are shown in figure 4. 

Table 1. Results for the ferromagnetic and antiferromagnetic square king model, two-cell 
cluster with periodic boundary conditions and modified weight function. 

Present work Previous work 

Two-cell cluster Four-cell cluster 
Ferromagnet Antiferromagnet with majority with majority Exact 

Parameter two cell two cell sign rule sign rule results 

KC 0.399 0.399 0.392 0.418 0.4407 
YT 0.939 0.939 0.883 0.929 1 .ooo 
YH 1.776 1 0  1.765 1.822 1.875 
YE 10 1.776 <O <O 

In order to analyse the critical properties of the square Ising antiferromagnet, it 
is only necessary to modify the weight function in such a manner that the symmetries 
of the system are preserved. That is 

The fixed-point and critical exponents fulfil the expected symmetry requirements 
(van Leeuwen 1975). If r is treated as a variable we find that at r = 2 there is close 
agreement between the calculated and exact critical properties. The critical curve for 
the antiferromagnet in a uniform field is also calculated using the two-cell cluster and 
this curve together with the conjectured curve of Muller-Hartmann and Zittartz (1977), 
which is known to be accurate but not exact, are shown in figure 5 .  

We have also investigated he properties of the triangular lattice using a two- and 
three-cell cluster with periodic boundary conditions. The weight function for this 
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model is 

where p = f ln[e3‘K21 + (e6rKz1 - 1)”*] and r is 3 for the triangular lattice. The results 
are shown in figure 6 for the two-cell cluster and in figure 7 for the three-cell cluster 
and also in table 2. Again we note that at the critical temperature there is good 
agreement with the known critical exponents, unlike the results of Witten and Prentis 
(1981). The general features observed for the square lattice are also observed for 
this model and we draw attention to the systematic improvement on the results 
obtained with the MSR. 
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Figure 5. Phase diagram of an antiferromagnet in a uniform field. The broken curve is 
the conjecture of Muller-Hartmann and Zittartz (1977) and the full circles are the results 
from the two-cell cluster and the modified weight function. 

4. The one-hypercube approximation 

The lower-bound one-hypercube approximation is a simple and reliable method for 
obtaining critical exponents and it has been applied to a variety of models. We refer 
the reader to Kadanoff et a1 (1976) for details of the method. There is, however, a 
serious flaw in that the weight function is dependent on the free energy and, as van 
Saarloos et a1 (1978) were able to show, the singularities in the free energy are now 
present in the RG transformation. It is possible to implement the weight function 
described by equations (10) and [ 11) into the approximation, thus removing from the 
transformation the inherent non-analytic features introduced in the original applica- 
tion. Griffiths (1981) notes that the one-hypercube has an attractive feature-the 
potential moving scheme factorises the modified partition function, thus preventing 
the development of the long-wavelength fluctuations. The RG equations are identical 
to those described by Knops (1977) but the parameter p is determined by equation 
(12) with r = 4. The fixed-point and critical exponents are shown in column 2 of table 
3. The thermal exponent is close to the value obtained through a consistent treatment 
of the lower-bound method [van Saarloos et a1 1978; see column 5 of table 3). There 
is, however, a marginal eigenvalue, y?, associated with the transformation. We may 
satisfy other conditions by varying r :  for example, at r = 3.81 the free energy is an 
extremum and the relevant exponents are shown in column 3 of table 3. In an exact 
calculation, the eigenvector associated with the thermal exponent is perpendicular to 
the critical surface and this condition is satisfied at r = 3.95. The results are shown 
in column 4 and show remarkable agreement with the exact values. 

5. Conclusion 

Griffiths and Pearce (1978) and Griffiths (1981) have drawn attention to the fact that 
RSRG have no inbuilt mechanism to prevent the summation of long-wavelength 
fluctuations which are present in the partition function. An essential property of the 
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Figure 6.  The variation of the properties of the RG transformation for the two-cell cluster 
(three-spin triangular cells) with r (see equation (13)). y H  and yT  are the magnetic and 
thermal exponents and K2, is the nearest-neighbour interaction for the two-dimensional 
triangular lattice. W and V are values of the weight function ( a )  for all spins in the 
Kadanoff cell aligned and ( b )  with one U spin opposite to the other spins in the Kadanoff 
cell. 

weight function must be the removal of these fluctuations from the modified partition 
function. We have shown how the weight function may be used to achieve the 
equivalent of the momentum cut-off for the one-dimensional Ising model. The 
differential RSRG of Hilhorst et a1 (1978) can be viewed in this light-the normalising 
factor of this weight function cancels all the nearest-neighbour interactions in the 
triangular lattice. The summation of the modified Hamiltonian is thus reduced to a 
set of fields { p ( r i ) }  acting on spins u(ri); this is a system without a phase transition 
and the RG transformation is free of non-analytic features. 

We were unable to define a weight function with all the proposed properties for 
the two-dimensional systems, although by satisfying some conditions improved results 
were obtained. We were able to demonstrate that, within the two-and three-cell 
cluster and the one-hypercube approximation, the feature of linking the weight 
function to the strength of the nearest-neighbour interactions leads to a consistent 
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Figure 7. The variation of the properties of the R G  transformation for the three-cell 
cluster (three-spin triangular cells) with r .  yH and yT are the magnetic and thermal 
exponents and KZ1 the nearest-neighbour interaction for the triangular lattice. W and V 
are the values of the weight function ( a )  for all spins in the Kadanoff cell aligned and ( b )  
with one U spin opposite to other spins in the Kadanoff cell. 

Table 2. Results from the ferromagnetic triangular king model. Two-cell and three-cell 
cluster with periodic boundary conditions and modified weight function. 

Present work Previous work 

Ferromagnet Three-cell Two-cell Three-cell 
Parameter cell cluster cluster? cluster? Exact 

KC 0.188 0.295 0.365 0.255 0.2747 
YT 1.185 0.914 0.791 0.739 1 .ooo 
YH 1.575 1.908 2.022 1.669 1.875 

f Domb and Green (1976). 



Weight function and optimal transformations 229 1 

Table 3. Results from the square king ferromagnet using the lower-bound (LB) one- 
hypercube approximation. 

r = 3.95 
One- r = 3.80 YT normal 
hypercube optimal to critical van Saarloos 

Parameter r = 4  free energy surface et a /  (1978) 
~~~~~~ 

P* 0.752 0.763 0.756 0.761 
YT 0.943 1.057 0.989 0.926 

1.875 1.878 1.876 1.877 
0 0 0 <O 

set of critical values. This is in contrast to the results obtained by Witten and Prentis 
(1981) whose optimal transformations either required unrealistic values for the weight 
function or led to values of yT which were lower than expected. It is hoped that 
improved results for the thermal exponent will be obtained with the lower-bound 
cumulant expansion (Shenker et a1 1979) if the weight function described by equations 
(10) and (1 1) is used instead of the majority sign rule. 

Acknowledgments 

NJ would like to thank the members of the Theoretical Physics Institute, St Francis 
Xavier University, for encouragement and stimulating discussions and H E Stanley 
and A Brown for a careful reading of the manuscript. The partial support of Natural 
Sciences and Engineering Research Council of Canada is gratefully acknowledged. 
The Center for Polymer Studies is supported by grants from ARO, NSF and ONR. 

References 

Domb C and Green M S (ed) 1976 Phase Transitions and Crirical Phenomena vol VI (New York: Academic) 
Griffiths R B 1981 Physica 106A 59-69 
Griffiths R B and Pearce P A 1978 1. Stat. Phys. 20 499-545 
Hilhorst H J, Schick M and van Leeuwen J M J 1978 Phys. Rev. Lett. 40 1605-8 
Kadanoff L P 1975 Phys. Rev. Lett. 34 1005-8 
Kadanoff L P, Houghton A and Yalabic M C 1976 J.  Stat. Phys. 14 171-203 
Knops H J F 1977 Physica 86A 448-56 
van Leeuwen J M J 1975 Phys. Rev. Lett. 34 1056-8 
Muller-Hartmann E and Zittartz J 1977 Z. Phys. B 27 261-6 
Nauenberg M and Nienhuis B 1974 Phys. Reo. Lett. 33 1598-601 
Nelson D R and Fisher M E 1975 Ann. Phys., N Y  91 226-74 
Nightingale M P 1977 Phys. Left. 59A 486-8 
van Saarloos W, van Leeuwen J M J and Pruisken A M M 1978 Physica 9 2 A  323-45 
Shenker S J, Kadanoff L P and Pruisken A M M 1979 J .  Phys. A :  Math. Gen. 1 2  91-7 
Wilson K G 1971a Phys. Rev. B 4 3174-83 
__ 1971b Phys. Ret.. B 4 3184-205 
Wilson K G and Fisher M E 1972 Phys. Reo. Lett. 28 240-3 
Witten T A and Prentis J J 1981 J. Phys. A :  Math. Gen. 14 447-57 


